
Online Scheduling via Learned Weights

Silvio Lattanzi∗ Thomas Lavastida† Benjamin Moseley† Sergei Vassilvitskii∗

Abstract

Online algorithms are a hallmark of worst case optimiza-
tion under uncertainty. On the other hand, in practice,
the input is often far from worst case, and has some
predictable characteristics. A recent line of work has
shown how to use machine learned predictions to cir-
cumvent strong lower bounds on competitive ratios in
classic online problems such as ski rental and caching.
We study how predictive techniques can be used to break
through worst case barriers in online scheduling.

The makespan minimization problem with restricted
assignments is a classic problem in online scheduling
theory. Worst case analysis of this problem gives
Ω(logm) lower bounds on the competitive ratio in the
online setting. We identify a robust quantity that can
be predicted and then used to guide online algorithms
to achieve better performance. Our predictions are
compact in size, having dimension linear in the number
of machines, and can be learned using standard off
the shelf methods. The performance guarantees of our
algorithms depend on the accuracy of the predictions,
given predictions with error η, we show how to construct
O(log η) competitive fractional assignments.

We then give an online algorithm that rounds any
fractional assignment into an integral schedule. Our
algorithm is O((log logm)3)-competitive and we give
a nearly matching Ω̃(log logm) lower bound for online
rounding algorithms.1 Altogether, we give algorithms
that, equipped with predictions with error η, achieve
O(log η (log logm)3) competitive ratios, breaking the
Ω(logm) lower bound even for moderately accurate
predictions.

1 Introduction

Modern machine learning has had unprecedented suc-
cess in speech and language understanding, vision, and
perception. More recently, researchers have shown how

∗Google Research. Email: {silviol, sergeiv}@google.com
†Carnegie Mellon University. Email: {tlavasti, moseleyb}

@andrew.cmu.edu. T. Lavastida and B. Moseley were supported in
part by a NSF Grants CCF-1830711, CCF-1733873, CCF-1733873
and CCF-1845146, a Google Research Award, a Bosch junior
faculty chair and an Infor faculty award.

1We use Õ(f(m)) and Ω̃(f(m)) notations to suppress factors
of logc f(m) for constant c.

to use machine learning to solve classical combinatorial
optimization questions, for example finding the optimal
decision strategy for the secretary problem [16], comput-
ing Optimal Auctions [12], or building faster look up
tables [17].

The above approaches achieve notable empirical
success, but come without any theoretical analysis.
A complementary line of work has looked into ways
to incorporate machine learned predictions to provide
formal guarantees, for instance improving competitive
ratios for online algorithms [20, 26]. These methods
bound the performance of the algorithm in terms of the
(ex-post) error of the predictor, and show that, with
good, but imperfect, predictions, one can circumvent
strong worst case lower bounds.

In this work we continue this line of research and
extend it to one of the central scheduling problems:
minimizing makespan under restricted assignment. In
this problem there are m machines, and jobs arrive one
at a time, each annotated with its size and the subset
of machines it can run on. The goal is to allocate jobs
to machines online, to minimize the makespan, i.e. the
maximum total size of the jobs on any machine. This is
a key problem in scheduling, but has strong, Ω(logm),
lower bounds on the competitive ratio.

Online algorithms operate under worst case assump-
tions about the input, but, in practice, the input often
has a repetitive nature to it. As an example, when
scheduling jobs in a large data center, we may observe
that some jobs happen daily around the same time (for
instance, regular backup jobs), and so their presence is
very predictable. Other jobs, for instance, payroll anal-
ysis jobs, may have some variability in terms of arrival
time, but are known to happen weekly, or at the end of
each month; overall traffic may be lighter on holidays,
or during extreme weather events, and so on. Thus, it
makes sense that we can predict something about the
jobs and the congestion of machines using standard fea-
tures, such as day of week, weekday vs. holiday, weather,
etc.

While the predictions are not going to be perfect,
they can still guide the allocation algorithm about which
machines will be in contention in the future. The nature
of the prediction then becomes part of the algorithm
design process. There is a fine balance between offloading

1859
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

too much of the complexity onto the predictor on one side,
versus having the prediction not provide any insights on
the other. The former makes the algorithmic problem
trivial, but the learning problem virtually impossible,
the latter gives little additional benefit over worst case
analysis. Thus, we strive for sparse representations that
capture the complexity of the problem. For instance,
for online bipartite matching, a problem closely related
to our work (except for the choice of the objective
function), previous work [11, 29] has shown that the
dual variables associated with machines in the LP
formulation of the problem are enough to reconstruct
the optimum assignment. As we will show in Section
2.3 this representation is not sufficient when minimizing
makespan, nor are other immediate quantities, such as
the total load of each machine in the optimum solution,
or the number of jobs that could potentially be assigned.

Our first contribution is in identifying a specific
quantity that we will predict. We follow the work of [1]
and associate a weight, wi with each machine i. We show
that even if we are only given access to estimates, ŵi of
the optimal wi, we can recover a near optimal fractional
solution, with the approximation guarantee that scales
logarithmically with the error.

Theorem 1.1. (Theorem 3.1 restated) Let w be a
set of machine weights that lead to a fractional solution
with makespan T . Let ŵ be predictions of w and let
η = maxi ŵi/wi be the maximum error in our predictions.
Then there exists an online algorithm that generates a
fractional assignment of jobs to machines with makespan
at most O(T log η).

The learned weights allow us to recover an approx-
imately optimal fractional solution; however, new al-
gorithmic challenges arise when rounding this solution
online to an integral solution. Our second technical con-
tribution is an online rounding procedure that loses an
O((log logm)3) factor in the makespan. Thus converting
from fractional to integer solutions is not as hard as
obtaining good fractional solutions in the first place. We
note that our rounding procedure can be used for the
more general unrelated machines problem, where job
sizes are machine dependent and uncorrelated.

Rounding a fractional solution online requires several
new ideas. Prior rounding algorithms need access to the
overall instance, and are inherently offline. For instance,
the 2-approximation of Lenstra, Shmoys and Tardos [19]
requires preprocessing the fractional solution, iteratively
transforming the assignment by shifting probability mass
found in cycles in the corresponding bipartite graph.
Obviously the full problem instance and assignment is
necessary to perform this kind of rebalancing. Other
methods utilize sophisticated configuration LPs [15, 28],

which cannot be easily modified to fit the online setting.
Thus known makespan rounding methods are not good
candidates to adapt to the online setting.

In an effort to design a good rounding algorithm, we
first observe that any deterministic rounding procedure
has a competitive ratio of Ω(logm) as compared to
the fractional solution (See Appendix 6.1). We resort
to randomized approaches. Since simple randomized
rounding will lead to a poor approximation ratio,
we introduce a new rounding algorithm that involves
carefully transforming the instance to ensure certain
structural properties, then classifying jobs into different
categories, and running different rounding algorithms for
each category. The classification is critical, as rounding
algorithms that are good for one category perform poorly
for others. However, coupled together in the right way,
we establish our results. See Section 4 for a proof
overview and Section 5 for the whole proof.

Theorem 1.2. (Theorem 5.1 restated) Let x be a
fractional assignment of restricted assignment jobs that is
revealed online and let T be the fractional makespan of x.2

There exists a randomized online algorithm that rounds
a fractional assignment to an integer assignment such
that the resulting makespan is at most O((log logm)3T)
with high probability.

In addition to this, we show that our online rounding
algorithm is nearly optimal. We show that no randomized
online rounding algorithm can achieve a competitive
ratio better than Ω̃(log logm) when rounding a given
fractional solution online (See Section 6.2).

Theorem 1.3. (Theorem 6.1 restated) Let x be a
fractional assignment of restricted assignment jobs that
is received online and let T be the fractional makespan.
No deterministic algorithm for converting x to an integer
assignment can be o(log / log logmm)-competitive with
respect to T . Further, no randomized algorithm for the
same task can be o(log logm/ log log logm)-competitive
with respect to T .

Combining the two upper bound results, we show
that by learning approximate weights and applying our
rounding algorithm one obtains an O(log η(log logm)3)-
competitive algorithm, an exponential improvement over
an algorithm that does not use any predictions, whenever
the predictions are reasonably accurate. We also show
that it’s easy to fall back to the traditional algorithm
in case when the error is detected to be large. More
formally:

2We assume that T is at least the size of any job to deal with
instances having poor integrality gap. See Section 5 for a proper
definition of T

1860
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Corollary 1.1. For any restricted assignment job
sequence there exist machine weights w and an on-
line algorithm that when given access to predictions
ŵ of the weights, assigns the jobs with competitive ra-
tio O(min{log η(log logm)3, logm}) with respect to the
makespan, where η = maxi ŵi/wi. The online algorithm
is randomized and succeeds with high probability.

1.1 Related Work There are multiple instances of
augmenting classic online algorithms with additional
information in order to improve competitive ratios.
Broadly, the extra information can come in the form of
assumptions on the data, or in terms of explicit hints
about the future given to the algorithm.

The most prominent example of the former is the
random arrival model, where the full set of arrivals is
chosen adversarially, but the exact sequence seen by
the algorithm is a random permutation of the worst
case instance. These lead to a family of algorithms that
use the first part of the input to learn the structure of
the input, often via simple empirical risk minimization
(ERM) methods, and then use the learned structure to
guide the algorithm’s choices on the rest of the input.
Notable examples include the secretary problem, where
the learned structure is just the best candidate seen so
far, to more delicate arguments, such as those in the
work by Devanur and Hayes [11] and Vee et al. [29] for
online bipartite matching. A line of work initiated by
Cole and Roughgarden [10] and continued by Balkanski
et al. [5] asks explicitly what kind of information can be
learned just from a sample of the data, and strives to
get tight bounds on the size of the sample necessary to
achieve good results.

A related structural assumption is that input comes
from a stochastic distribution. This too has been
studied in the context of online matching [23] and
bandit learning [8], where the authors show how to
get improved guarantees if the assumption holds, and
retain the worst case guarantees if it does not. Mahdian
et al. [21] generalize this even further, allowing for an
arbitrary optimistic algorithm, rather than assuming
that the input is stochastic, and showing how to recover
a constant fraction of either the optimistic or worst case
performance.

In a new line of work, Kumar et al. [18] assume that
the online input is a mixture of adversarial elements
and elements arriving from a known sequence. They
show how to achieve near optimal results for the online
matching in this “semi-online” model of computation.

The work described above assumes that the input
is restricted in some manner. Additionally, there has
been increased interest in a model, where the input is
not explicitly restricted, but some information about

it is available to the algorithm. The seminal work by
Ailon et al. [2] considered “self-improving” algorithms
that effectively learn the input distribution, and adapt
to be nearly optimal in that domain.

More recently, Lykouris and Vassilvitskii [20]
formulated the Online with ML advice model, and
showed how to improve the competitive ratio of caching
algorithms given a prediction of the subsequent arrival
time of an element when it appears. Purohit et al. [26]
extended this work to the classical “ski rent or buy”
problem, where the algorithm is given an estimate on the
number of skiing days, and to non clairvoyant scheduling,
where the prediction is on the length of each job. In a
slightly different setting, Medina and Vassilvitskii [22]
use predictions about bidders’ valuations to set good
reserve prices in an auction, and Hsu et al. [14] use
predictions on the expected frequency of an element to
improve the space complexity of heavy hitters sketches.

These kinds of predictions have also been used to
improve classical data structures, Kraska et al. [17]
show how to speed up indices using neural networks,
while Mitzenmacher [24] shows how to reduce the space
complexity of Bloom Filters given a prediction of set
membership.

Finally, in the online algorithms with advice model,
the algorithm has access to an oracle that knows the
exact input. The goal then is to reduce the amount
of information the oracle needs to communicate to
the algorithm, see Boyar et al. [7] for a recent survey.
Critically, in this model the oracle is perfect, and makes
no mistakes, whereas we explicitly assume that the
predictions are going to be error-prone, and our goal
is to tie the competitive ratio of the algorithm to the
quality of the predictions.

The other closely related area of work is that of ap-
proximation and online algorithms for scheduling. There
has been a considerable amount of work on approximate
makespan minimization. The work of Lenstra, Shmoys
and Tardos [19] gives a 2-approximation algorithm by
rounding a natural LP relaxation and this result holds
for the unrelated machines case. The breakthrough work
of [15, 28] improves the approximation ratio for the re-
stricted assignment problem. The work of Svensson [28]
shows a 1.9412 approximation and Jansen and Rohwed-
der [15] improves this to a 2− 1

6 + ε approximation. This
additionally bounds the integrality gap of the configura-
tion LP by 2− 1

6 . For the unrelated machine case, the
best known approximation is 2. Recently, Chakrabarty,
Khanna and Li [9] show improved results for a special
case. In the online setting there are tight bounds of
Θ(logm) on the competitive ratio for the restricted as-
signment problem [4].

1861
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

2 Preliminaries

2.1 Problem Definition and Notation We study
the online restricted assignment problem. In this
problem there are m machines (indexed from 1 to m) and
a sequence of jobs that arrive online. Job j has an integer
size pj > 0 and a subset of machines ∅ (N(j) ⊆ [m]
where j can be feasibly assigned. Throughout this paper
we refer to N(j) as the neighborhood of job j. Similarly,
we can define the neighborhood of a machine i, N(i) as
the set of jobs that can feasibly be assigned to i. The
neighborhood structure induces a bipartite graph on the
set of machines and the set of jobs. The algorithm must
irrevocably assign each job j to some machine i ∈ N(j),
and it must do so online, i.e. with no knowledge of the
future jobs in the sequence. This assignment incurs a
load on each machine, equal to the total size of the
jobs assigned to each machine. The objective is to
minimize the makespan, or maximum load across all
machines. If Ji is the set of jobs assigned to machine i,
then Li =

∑
j∈Ji pj and the makespan, T = maxi∈[m] Li.

A more general version of this problem is the online
makespan minimization on unrelated machines problem.
The setup for this problem is mostly the same as above,
except that instead of jobs having a single size and a
subset of feasible machines, the size of a job is completely
machine dependent and uncorrelated between machines.
That is, for each machine-job pair i, j, there is a size
pij > 0 that determines the size of job j if it were
assigned to machine i. The objective is still to minimize
the makespan. The restricted assignment problem can
be reduced to unrelated machines by taking pij = pj if
i ∈ N(j) and pij =∞ otherwise.

We study our algorithms in the setting of competitive
analysis. If T is the optimal makespan for a sequence of
jobs in hindsight, then we seek to give online algorithms
that output assignments with makespan at most αT ,
for α ≥ 1 as small as possible. If an online algorithm
achieves such a guarantee, then we say that the algorithm
is α-competitive. For the case of the online rounding
problem we define competitiveness similarly, but instead
with T = max{maxi∈[m]

∑
j∈N(i) pjxij ,maxj pj}. In the

case of randomized algorithms, we compare our online
algorithm to oblivious adversaries. The adversary does
not have access to the randomness used by our algorithm
to make assignments. That is, the adversary fixes the
(worst case) sequence of jobs in the beginning, then our
algorithm runs and assigns the jobs.

In analyzing randomized algorithms we will often say
that some event occurs with high probability. We take
this to mean that the event occurs with probability at
least 1−1/mc, for any constant c > 0. This implies that
we can union bound over any polynomially in m many
“bad” events and retain high probability. We will use

concentration inequalities to establish high probability
bounds several times in our analysis, see Section A for
the exact statements of the bounds we use.

Technical Assumptions. Throughout the rest
of this paper, we assume that our algorithms know
the optimal makespan T . In the offline setting this
assumption can typically be removed by a simple binary
search. In Appendix D, we show how to remove this
assumption in the online setting via a standard doubling
argument. We also assume that the job sizes are at least
1 and are polynomially bounded, i.e. pj = O(mk) for
some constant k. This assumption can be made with
negligible increase in the competitive ratio.

2.2 ML Oracles When incorporating predictions
into an online algorithm, an important consideration is
deciding what to predict. At a high level, the predictions
should give a parsimonious representation of the problem
instance. Specifically, we want the prediction to satisfy
three properties:

• The performance of the algorithm should degrade
gracefully with the error in predicted quantities.

• The predictions should be robust to inconsequential
changes in the problem instance.

• The predictions should be efficiently learnable, that
is they should be concise and come from a limited
domain.

The first point is critical to good algorithm design.
Machine learned approaches are never perfect, and errors
are to be expected, and any algorithm that is not robust
to errors in the predictions is bound to perform poorly
in practice. In their definition of the model, Lykouris
and Vassilvitskii [20] further insist that algorithms are
consistent, that is they recover the optimal solution as
the prediction error goes to zero.

The next two properties describe what it means
for the learning to be meaningful. For instance, some
quantities may be easy to predict, but give no insight
into the structure of the problem instance. For instance,
predicting the total load on each machine in the optimal
solution is not a good prediction—one can easily extend
any example to make sure that the total load on each
machine is identical. We give other examples of poor
options for predictions, and further describe the qualities
of a meaningful prediction in Section 2.3.

In contrast, the last point puts limits on the nature
of the predictions, making sure they can be efficiently
learned. For instance, one may propose predicting the
exact instance that will appear and then execute the
offline algorithm on the learned prediction. The field
of computational learning theory has developed strong
bounds on the number of examples needed to effectively

1862
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

learn a function from a given class. Specifically, it is well
known that if the hypothesis class contains N functions,
one needs at least logN examples to learn the best
function (this is the weakest lower bound, typically
many more examples are necessary) [25]. In the case of
restricted assignment, each of the jobs can be matched to
2m machines, therefore an instance with n jobs arriving,
can take on 2mn different values. Thus learning the jobs
requires at least Ω(mn) examples, which is prohibitively
expensive even for relatively small m and n. On the
other hand, learning a single parameter per machine
is a much easier learning task, requiring many fewer
examples.

In much of the previous work the choice of the
prediction was relatively straightforward. For instance
for the classic ski rental problem, Purohit et al. [26]
predict the number of skiing days, and then base their
decision on the value of the prediction vis-à-vis the cost
of buying the skis. In streaming heavy hitters, Hsu
et al. [14] predict whether an element is likely to be
a heavy hitter, and if so, maintain its count exactly,
rather than resorting to a sketch. Finally, for the
online caching problem, Lykouris and Vassilvitskii [20]
focus on predicting the subsequent arrival time of each
element, and then modify the Marking algorithm to
take advantage of this new information. In contrast, in
online scheduling, the question of what to predict is not
obvious.

2.3 Predictions for Online Scheduling The deci-
sion of what to predict obviously influences the design
of the algorithm using these predictions. However, even
without an algorithm in mind, we can eliminate some
choices because they fail to satisfy one of the criteria
listed above.

For the online scheduling problem, the quantity
we predict should intuitively guide us how congested a
particular machine is going to be. Consider a restricted
version of the problem, where the optimal makespan
has value one. Then each instance is equivalent to a
bipartite graph between jobs and machines, and the
offline problem is to compute a matching between jobs
and machines. Given the full instance, what is a good
representation that can be used to guide the online
algorithm?

One natural approach is to look at the degree of
each machine, i.e. the number of jobs that could be
assigned to it. However, by adding a small number of
dummy jobs and machines it is easy to modify each
instance so that all machines have identical degree, in
which case, this prediction does not carry any additional
information. A similar fate befalls predictions of the
load of each machine in the optimal solution, the degree

of the jobs, and other simple heuristics: for each of these
there exists a simple transformation that makes this
additional information vacuous.

A more robust approach is to look at the dual prob-
lem, and consider learning the dual variables correspond-
ing to machines. This kind of a setting has been success-
fully used for online bipartite matching—Devanur and
Hayes [11] showed how to use duals learned on a ran-
dom sample of the input to give approximately optimal
solutions in an online setting. Critically, however, the
choice of the objective plays a large role: while using
1+ε approximate duals gives a (1−O(ε)) solution to the
bipartite matching, the same approach does not yield
a constant competitive approximation to the makespan.
The reason is that in job scheduling, we must match
all of the jobs to machines and compare the resulting
makespans, whereas in online matching, we only try to
match as many jobs as possible to empty machines and
compare the cardinality of the matching.

Another approach for online matching, advocated
by Vee et al. [29], was to formulate the online matching
problem as a quadratic program, and then look at the
dual variables in that space. In addition to the mismatch
in objective described above, we note that the duals in
the Vee et al. formulation are extremely sensitive, and
approximately correct duals may no longer lead to near
optimal solutions on the primal.

3 A Robust Online Algorithm via Machine
Weights

In this section we identify a quantity that compactly
captures the structure of an offline instance of the
problem. We give an online algorithm to compute
fractional solutions using these quantities, and show
that they are robust to errors, if we were to predict
them.

The key idea is to assign a weight to each machine,
and then allocate each job proportionally to the weights
of the machines that it can be assigned to. Intuitively,
the machine weight is inversely proportional to the
contentiousness of the machine, i.e. machines with very
high demand have small weights.

Formally, let w ∈ Rm+ be a vector of non-negative
weights, one per machine. Let xij(w) denote the
fractional assignment of job j on machine i when using
weights w, we define the assignment function as:

(3.1) xij(w) =
wi∑

i′∈N(j) wi′

We first need to show that the weights capture
enough information for us to reconstruct a good solution.
In other words, we need to ensure that for any offline

1863
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

instance there are a set of weights such that the
corresponding fractional assignment has a near optimal
makespan. We build upon the work of Agrawal et al [1]
who showed the existence of such weights for b-matchings.
Formally, we say that a set of weights w is c-good if
for every machine i,

∑
j∈N(i) pjxij(w) ≤ cT for some

constant c ≥ 1. Good weights exist for arbitrarily small
c for the restricted assignment problem and the proof is
omitted to a full version of the paper.

Given that weights are enough to reconstruct ap-
proximately optimal solutions, they will be our target
for predictions. Before analyzing what happens when
weights are predicted incorrectly, we observe that the
allocation given by w is scale invariant, i.e. that γw
yields the same allocation as w for any γ ∈ R.

Remark 3.1. The fractional assignment produced by w
is scale invariant, i.e. for any γ ∈ R, xij(w) = xij(γw).

3.1 Constructing Fractional Solutions Online
Using Learned Weights Suppose that ŵ is a predic-
tion of good weights w. Due to scale invariance, we can
assume that ŵi ≥ wi for all i. First we consider using
ŵ directly to compute allocations online using Equation
3.1. To analyze this procedure we define µi = ŵi/wi ≥ 1
to be the relative error with respect to the i’th ma-
chine. We define the total error in the prediction to be
η = maxi µi. Consider the allocation xij(ŵ) given by
the predictions. Intuitively, this allocation is locally a
good approximation to xij(w), which implies that the
makespan of our complete solution is bounded. The
following claim makes this intuition precise and implies
that the naive algorithm will have a makespan of O(ηT).

Claim 3.2. For all i and j we have that xij(ŵ) ≤
ηxij(w).

Proof. Using equation (3.1) we have:

xij(ŵ) =
ŵi∑

i′∈N(j) ŵi′
=

µiwi∑
i′∈N(j) µi′wi′

≤ η

(
wi∑

i′∈N(j) wi′

)
= ηxij(w).

Thus we see that the error in our prediction cleanly
shows up in the competitive ratio of our algorithm.
However we can use standard techniques from online
algorithms to improve on this result exponentially. The
key idea is that we do not have to continue using the
current predictions ŵ if we believe the error is large.
Rather than use the predictions statically, we update
them over time to account for errors that have been

detected. The following observation is important in
formalizing this idea. If for all i 1/2 ≤ ŵi/wi ≤ 1, then
xij(ŵ) ≤ 2xij(w). This follows by applying the same
style of analysis as above. This motivates the design of
Algorithm 1.

Algorithm 1 Improved algorithm for computing frac-
tional assignments online

Let ŵ be predictions of w
Initialize Li ← 0 for each machine i . Li = fractional
load of machine i
for each job j do

For all i ∈ N(j), Li ← Li + pjxij(ŵ) . Compute
fractional assignment

for i = 1, . . . ,m do
if Li > 2T then

ŵi ← ŵi/2, Li ← 0 . Update ŵ, start new
phase

Algorithm 1 keeps track of the load of each machine
in phases. At the start of a machine’s phase its load Li
is initialized to 0. As each job j arrives we update Li by
adding xij(ŵ). At this point if Li ≤ 2T we do nothing,
as we have no reason to believe that µi = ŵi/wi is very
large. However, if Li > 2T , then by our observation we
know that µi is large, so we update ŵi by dividing it
by 2 and start a new phase by resetting Li to 0. Once
the condition in our observation is satisfied, we know
that this will be the last phase for all machines. So the
question becomes, how many phases will each machine
go through until the condition is satisfied. Let ki be the
number of phases that machine i starts. The condition
is satisfied for machine i when 1/2 ≤ ŵ

2kiwi
≤ 1 which

implies that ki ≤ dlog2(ŵi/wi)e+1. All machines satisfy
the condition after k = maxi ki = maxi log2(ŵi/wi) =
maxi log2(µi) phases.

How much does this algorithm lose in terms of the
makespan? Each machine phase incurs a factor of 2
loss in the makespan, and each machine has at most
k = maxi log2(µi) phases. Thus we see that the resulting
makespan is O(kT) = O(maxi log2(µi)T). Since µi ≥ 1,
we have that maxi log2(µi) = log2(maxi µi) = log2(η).
Thus the competitive ratio is O(log2(η)), an exponential
improvement over naively using the predictions. We
state the above results in Theorem 3.1.

Theorem 3.1. Let ŵ be predictions of a set of good
machine weights w and let η = maxi ŵi/wi be the
maximum error in our predictions. Then Algorithm
1 is an O(min{log η, logm})-competitive algorithm for
minimizing the fractional makespan online.

In order to get the stated competitive ratio of
O(min{log η, logm}), we run Algorithm 1 normally

1864
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

until assigning some job causes our algorithm to have
makespan > 2 logmT . In this case, the predictions are
not helpful and we switch to a O(logm)-competitive
algorithm from the literature, such as those in [3, 4].

3.2 Learning the Weights Thus far we have shown
that individual machine weights are a good candidate
for a learnable summary for the restricted assignment
problem: they can be used to reconstruct a near-optimal
fractional solution, and the assignment is robust to errors.
Here we give a brief insight into the learning problem
itself.

As in all machine learning scenarios, we assume
that each machine is annotated with a set of features
representing its characteristics. The features may
capture hardware specifications of the machine (e.g. its
memory, number of cores, processing speed, etc.), its
location (e.g. the name of the datacenter), software
considerations (e.g. operating systems and packages
are installed), and so on. For a machine i ∈ [m], let
fi represent the vector of features associated with the
specific machine. Next we define the labels. Given an
offline instance of the restricted assignment problem
(set of machines, jobs, and the assignment graph), we
compute good weights w for every machine.

Finally, we set up the learning task. If F is the
set of all possible features, the learning task is to find
a function h : F → R+ from features to weights. The
exact choice of h is up to the practitioner. For instance,
when using linear regression, the learning task is finding
a vector θ such that hθ(f) =

∑
i∈[m](f · θ − wi)

2 is
minimized. In Appendix B we give other ways to learn
the weights.

The question of how well one can learn the weights
is at its heart an empirical question. As always, by
increasing the set of features, and using richer hypothesis
classes from which to draw the best h will lead to lower
errors. We do highlight that our allocation algorithm
also has some natural properties. For instance, any
two machines that are identical (that have the same
features), will always have the same weight and thus the
same fractional assignment for a job feasible for both
of them. Similarly, any two jobs that have the same
neighborhoods will have the same fractional assignment
as well.

4 Rounding Algorithm Overview

Before delving into the technical details, we first describe
an overview of the rounding algorithm. Recall that jobs
arrive online and when job j arrives the algorithm learns
xij for all machines i. We assume that

∑
i∈[m] xij = 1

and the goal is to be competitive with the final fractional
makespan. T := maxi∈[m]

∑
j∈[n] pijxij . To make the

exposition simpler, we discuss the case of restricted
assignment with unit sized jobs and the algorithm knows
the exact fractional makespan T a priori. In this case,
each job has size 1 or ∞ on each machine.

First observe that if T ≥ Ω(logm) then the rounding
is easy. Each job j independently performs randomized
rounding, selecting a machine i with probability xij .
Because the contribution of each job is much smaller
than the total makespan, standard concentration bounds
ensure that the makespan is bounded by O(T) with high
probability. The challenging case is when T is small
compared to logm. In the proof, we denote this the
“large” job case.

We further break up the analysis into two cases.
Let Bj = {i | xij ≥ 1

log2m
} and Sj = {i | xij <

1
log2m

and xij > 0}. The set Bj contains the machines

where xij is big and Sj are the machines in the support
where xij is small. Let B be the set of jobs j where∑

i∈Bj
xij ≥ 1

2 . These are jobs mostly assigned using
large xij values. Let S be the remaining jobs. These are
jobs assigned using mostly small xij values.

Jobs in B. We begin by simplifying the instance.
We show that at the cost of losing a factor of O(log logm)
in the total cost, we can transform the instance to one
with xij ∈ {0, 1

λ} for a single value 1
log2m

≤ 1
λ ≤ 1. This

further implies that each job j has Θ(λ) machines in
the support of xij . Let N(j) be this set of machines.

Notice that each machine can have at most Õ(Tλ) =
O(poly logm) jobs that can be assigned to it. This case
is hard because the fractional solution is revealing very
little information. Indeed, each job is uniformly split
across a neighborhood of size λ.

To reason about the rounding in this case, consider
the bipartite graph G corresponding to the problem
instance. Nodes representing jobs are on one side, and
machines are on the other, with an edge between a
job and machine if the (job, machine) pair is in the
support. By construction the maximum degree in this
graph, ∆ = O(poly(logm)). Now to allocate jobs we use
the following algorithm: when job j arrives, it selects
machines independently at random from N(j), selecting
machine i with probability Θ(log log(m) · xij)3. The
job can assign itself to any machine chosen so long as
the machine has been assigned at most O(T log logm)
jobs so far. If the job does not select a machine or the
machines are overloaded then the job “fails” and enters
a set F of failed jobs.

Let GF be the induced subgraph consisting only

3Note that machines are chosen independently and this
independence is crucial for the proof. A job may select more than
one machine or no machines. It easily follows that the probability
a job fails to chose a machine is bounded by exp(Θ(− log logm))

1865
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

of the failed jobs and all of the machines. The key to
the proof is showing that with high probability every
connected component in GF is small. In particular,
each connected component has fewer than poly logm
nodes. Intuitively, this is because the graph G has
maximum degree at most poly logm and therefore the
graph is broken into small pieces. This is reminiscent
of the shattering idea in the parallel graph algorithms
community [6, 13].

If this is the case, and the components are small
then the problem becomes easy. Each failed job assigns
itself greedily to the least loaded machine. It is known [4]
that the greedy deterministic algorithm is a O(logm′)-
approximation for any input with m′ machines. We
can think of each component as an individual instance,
resulting in m′ ≤ poly logm and these jobs contribute
at most a O(T log logm) amount to the makespan.

Finally, we argue that the components are indeed
small. Notice that if there is a connected component
of size poly logm then there should exist a path in the
graph of length at least poly logm

λ because the maximum
degree is λ. Thus, it suffices to show that no such path
survives. The proof begins by establishing that each job
fails with probability at most 1

logcm for some constant c
by simple concentration bounds. This means that every
edge in G remains in GF with probability at most 1

logcm .
For sake of intuition assume that each edge were to

be removed independently with this probability (this is
not true and we will remove this assumption shortly).
The probability a fixed path of length ` survives is at
most (1

logcm)` = 1
logc`m

. Hence we can union bound over

all possible paths to show that no long paths survive.
More precisely, assume that the path starts at a machine
node in GF and there are m starting positions. Recall
that the maximum degree is ∆, thus the total number
of paths of length ` is bounded by m∆`. Ensuring that
∆ ≤ log3m and choosing c ≥ 4 and ` ≥ logm ensures no
path exists with good probability. This implies there is
no large connected component, completing the analysis
of jobs in B.

The only issue that remains is the assumption on
the independence of the edges. The proof establishes
that edges or nodes sufficiently far apart survive to be in
GF independently. By carefully counting ‘special’ sets
of edges that survive independently because they are
well separated, but still reachable in a few hops, allows
us to effectively use the above argument.

Jobs in S. When we rely on machines with small
assignment, we will run randomized rounding in phases.
In phase k, each job j that makes it to the phase selects
a machine with probability xij . If the chosen machine’s
makespan is smaller than O(T) from jobs assigned during
phase i then the job goes to the machine. If not, then

the job goes to phase k + 1.
Define the fractional makespan of phase k to be

the maximum fractional makespan on the machines
only counting jobs that survive to phase k. Using
concentration bounds, we can show that the fractional
makespan decreases rapidly with each phase. Intuitively,
this is because most jobs have a good probability of
being successfully assigned. After O(log logm) number
of phases, the fractional makespan will drop below
O(1

log2m
). This is the last phase. At this point, if a job

still survives then the job chooses logm machines in N(j)
uniformly at random. Then the job goes to a machine
that no other job from this phase selected. Because the
fractional makespan is so small, concentration bounds
will imply that with high probability one of the machines
that each job picks with be chosen only by that job. Thus,
the overall the makepsan will be O((log logm)T) from
rounding jobs in S with high probability.

5 Online Rounding Algorithm & Analysis

In this section we give a formal analysis of the online
rounding algorithm. For this section we assume the more
general unrelated machine problem. Recall the setup of
the problem. Jobs arrive over time online. When each
job j arrives, the value of the fractional assignment, xij ,
and the job size pij is revealed for all machines i. That
is, at each time t we know the fractional assignment
xij for all jobs j that have arrived up to time t and
have no information about the future jobs. We assume
that

∑
i xij = 1. That is, all jobs are fully fractionally

assigned.
The goal is to assign jobs online to machines inte-

grally using the fractional values as a guide so that the
final makespan is as close as possible to the makespan
of the fractional schedule. Since the integrality gap
can be bad for the underlying linear relaxation4, we de-
fine the quantity T := max{maxi∈[m]

∑
j∈[n] pijxij , p

∗},
where p∗ = max{pij | xij > 0}. Note that this as-
sumption enforces pij ≤ T whenever xij > 0. It is
known that the integrality gap is large if this condi-
tion is not met [30]. Since we apply the result of
this section to the case of restricted assignment, we
note that the definition of T above reduces to T =
max{maxi∈[m]

∑
j∈N(i) pjxij ,maxj pj} for this case.

An interesting challenge in our setting is that the
assignment needs to be online so the algorithm only
has partial knowledge of the instance. We assume
no structural properties on the fractional solution.
In particular, we do not assume that the fractional

4If there is 1 unit size job with xij = 1/m for all i ∈ [m] then
any assignment has makespan 1, a factor of m larger than the
fractional makespan.

1866
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

assignment corresponds to a vertex of the linear program
for makespan on unrelated machines, a key property used
in offline rounding procedures [19, 27].

Now we present an online randomized algorithm
for rounding fractional assignments which achieves
a competitive ratio of O(poly(log logm)) with high
probability. Throughout the analysis, we will assume
that T is known. Later we discuss how we can remove
the assumption on the knowledge of T using a standard
doubling analysis. We state our result formally as the
following theorem.

Theorem 5.1. Let x be a fractional assignment of
unrelated machines that is received online and let T be the
fractional makespan of x, i.e. T := maxi

∑
j∈N(i) pijxij .

Further, xij = 0 if pij > T . There exists a randomized
online algorithm that rounds a fractional assignment to
an integer assignment such that the resulting makespan
is at most O((log logm)3T) with high probability.

5.1 Instance Transformation The first step in our
analysis is to convert the instance into a number of
simpler instances as we receive it online. Depending on
the properties of the job, it will be sent to a procedure
for that particular job type.

We redefine the neighborhood for the unrelated case
as N(j) := {i | xij > 0} be the set of machines in
the support for job j. We will refer to this as the
neighborhood of job j. Recall that job sizes are
bounded in the following way: pij ≤ T for all i ∈ N(j).
Now the first breakdown we make is to separate jobs
into a notion of small and large jobs. For a job j let
Sj = {i ∈ N(j) | pij ≤ T/ logm}. We say that a job
is small if

∑
i∈Sj

xij ≥ 1/2, and otherwise it is large.
Intuitively, a job is small if most of its fractional weight
is on machines with small pij as compared to T . Note
that this separation can easily be done online because it
only depends on pij and xij for a job j.

The interesting case is the large jobs, which we
discuss next. The small jobs can be assigned by
using randomized rounding as we show in Section 5.2.5.
Because the jobs are small, Chernoff bounds ensure no
machine is overloaded with high probability.

5.1.1 Transforming Large Jobs We first consider
how to round the large jobs. For this, we further break
the jobs into cases. For each job j let Bj = N(j) \ Sj
be the set of machines i in N(j) where pij > T/ logm.
Let B be the set of large jobs. For each large job j we
have

∑
i∈Bj

xij ≥ 1/2. We now preprocess the large jobs

online creating a new fractional solutions x′ where the
following properties hold.

Lemma 5.1. At a loss of increasing the makespan by
a O(log logm) factor, the fractional solution x can be
converted to a fractional solution x′ where the following
properties hold:

• x′ij ≥ 0 and
∑
i∈N(j) x

′
ij = 1

• x′ij ≤ 2 log log(m)xij

• If x′ij > 0 then pij = 2kT/ logm for some fixed
k ∈ [log logm]

This modification can be done for each job individually
in an online manner.

This preprocessing step will allow us to assume that
the size of the job is the same on all machines in the
support of x′ for the job.

Proof. Consider the intervals Ik = [2k−1 T
logm , 2

k T
log(m)]

for k ∈ [log logm]. We have that [T logm,T] =⋃log logm
k=1 Ik. Let Bj,k = {i ∈ Bj | pij ∈ Ik}. Since

all large jobs have most of their fractional weight on
machines with pij ∈ [T/ logm,T], by averaging there
is a k ∈ [log logm] such that

∑
i∈Bj,k

xij ≥ 1
2 log logm .

That is, a large fraction, at least 1
2 log logm , of a job’s

fractional assignment is to machines where the sizes are
within a factor 2 of each other. Set x′ij = 0 for i /∈ Bj,k
and x′ij = xij/

∑
i′∈Bj,k

xi′j for i ∈ Bj,k. It is simple to
verify the above properties for this transformation.

Since for all i such that x′ij > 0 we have that

pij ≤ 2kT/ logm, we can think of the job as having
a single size p′j = 2kT/ logm on its neighborhood of
machines for some k ∈ [log logm] by rounding the size
up by at most a factor two.

Thus we have reduced the more general unrelated
machines instance to an instance of restricted assignment.
In the new restricted assignment instance, a job has
a fixed size, but can only be assigned to a subset of
machines.

Let Ck be the set of large jobs in the k’th class
that now have size 2kT/ logm. We say that j ∈ Ck is
of class k. In the remainder of this section we show
how to round the jobs in the k’th class with small loss
in the makespan. Since there are O(log logm) such
classes and we increased each fractional value by at
most an O(log logm) factor, we lose an extra factor
of O((log logm)2) overall. For simplicity we assume
throughout the rest of the analysis that the solution x
has the properties stated in the claim.

5.2 Rounding A Single Class of Large Jobs We
now focus on a single class Ck of large jobs. All jobs
in this class have the same size p′j = 2kT/ log(m), but

1867
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

a job specific neighborhood N(j) of feasible machines.
We break these down into two more cases.

For a job j let S′j = {i ∈ N(j) | xij ≤ 1
log2m

}. We

say that a job j’s fractional assignment has small support
if
∑
i∈S′j

xij ≥ 1/2, and otherwise it has large support.

(This inference can be easily done online). We start by
analyzing the jobs with large support.

5.2.1 Jobs with Large Support For jobs with large
support, we further preprocess the instance to give it
more structural properties. In particular, we will show
that by increasing the makespan by a log logm factor
we can assume that for a fixed job j the values of xij
are either 0 or a single positive value.

Lemma 5.2. Fix a class Ck of large jobs. The fractional
solution can be modified by increasing the makespan by
a factor O(log logm) to ensure the following property
holds. For each job j ∈ Ck, for all i either xi,j = 0

or xi,j = 2`

log2m
for some fixed ` ∈ [log logm]. This

modification can be done for each job individually in an
online manner.

Proof. For a job with large support we have that most of
its fractional assignment is on machines i with 1

log2m
≤

xij ≤ 1. Fix a job j. Consider grouping machines by
their fractional values in powers of 2. A machine is in

group ` ∈ [2 log logm] for job j if xij ∈ [2`

log2m
, 2`+1

log2m
].

Let Gj,` contain all such machines.
By an averaging argument, there is a group Gj,` of

machines where the job j has at least a 1/2 log logm
of its fractional assignment. That is, there is an
` ∈ [2 log logm] where

∑
i∈Gj,` xij ≥

1
4 log logm . Let λj

be the number of machines in this group. Since all
the fractional assignments in this group are off by at
most a factor of 2 from each other, we might as well
consider them to be the same at the cost of a factor of 2.
We set x′ij = 1/λj to be the new fractional assignment
for machines in this group and x′ij = 0 for machines
outside of this group. By construction we have that
log2m

2` ≤ λj ≤ log2m
2`−1 for some `. Let D` be the set of

large support jobs with λj in the interval [log2m
2` , log2m

2`−1].
We will refer to a set D` of jobs as a group for some
fixed `. Since there are O(log logm) such groups of
large support jobs, it suffices to consider only a single
such group at the cost of increasing the makespan by a
O(log log(m)) factor.

5.2.2 Rounding a Single Group of Large Sup-
port Jobs This section gives the algorithm for the case
where jobs have large support. Fix a class D` of large
support jobs. All of these jobs have a neighborhood of
size at most λ for some λ ≤ log2m. Our aim is to show

that a single iteration of randomized rounding followed
by a deterministic greedy assignments suffices to assign
these jobs in a good way.

The algorithm we use to round these jobs is as
follows. Each job j chooses a random machine in its
neighborhood N(j), then checks the machine it chose.
If the load incurred by other jobs in class D` on this
machine is greater than 101 log logmT , then the job
rejects this assignment. In this case the job is added to
the set F` of failed jobs for class `. The jobs in F` are
assigned using a deterministic greedy algorithm.

The greedy algorithm works as follows. For a
machine i ∈ N(j) let its `-load be the number of jobs
in F` that have already been assigned to it. A job
j ∈ F` chooses to be assigned to the a machine with the
minimum `-load. This can easily be done online.

By definition, the jobs assigned using randomized
rounding contribute O((log logm)T) to the makespan.
Thus it suffices to bound the contribution of the jobs
assigned using greedy.

Let G` be the bipartite graph consisting of nodes
for each job in F` that rejected their random assignment.
The set of machines are on the other side. A job
i ∈ F` is connected to a machine j with an edge if
and only if xi,j ≥ 0. The proof will show that every
connected component of G` has size O(poly(logm)) with
high probability. It then follows that the jobs assigned
by greedy contribute O(log logm)T to the makespan.
This is because the deterministic greedy algorithm
[4] is known to achieve a O(log m̂) approximation for
any instance of restricted assignment on m̂ machines
and each connected component is an instance of size
O(poly(logm)) with high probability. Thus, these are
“instances” of size O(poly(logm)) and the makespan of
the greedy algorithm as compare to optimal can be at
most a O(log logm)T factor larger.

In order to show that G` has small connected
components we apply a technique similar to shattering
in the distributed computing literature. We will define
a special substructure and show that if a connected
component of G` is large, then one of these substructures
exist. We will then show that the probability of
one of these substructures existing is small; after
carefully counting the number of possible substructures
and applying a union bound we can conclude that
every connected component of G` is small with high
probability.

We start by defining the substructure.

Definition 5.3. Two jobs j and j′ are machine disjoint
if N(j) ∩N(j′) = ∅.

Definition 5.4. A sequence j1, j2, . . . , jβ of jobs is
special if all the jobs are pairwise machine disjoint

1868
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

and for each k, jk is within 4 hops of at least one of
j1, . . . , jk−1 in G.

Later on, machine disjointness will allow us to
show that certain events are statistically independent.
Note that by definition, all of the jobs in a special
sequence must belong to the same connected component.
Equipped with these definitions we prove the following
lemma:

Lemma 5.5. Let C be a connected component of G` of
size at least logcm with c > 7, then there is a special job
sequence of size β = logm.

Proof. We prove the lemma by induction on the size
of the sequence. Every large connected component has
at least one job, so the base case is trivial. Now for
the induction step. Let C be a connected component
with size at least logc(m). Suppose there is a special job
sequence of β − 1 jobs. We combine these jobs into a
single node and start a breadth first search in C. Since
the underlying graph is bipartite, the first level of this
search consists of machines, the second jobs, and the
third machines. If there is any job in the fourth level of
this search, then it must be machine disjoint from the
first β − 1. Suppose that there is no such job. Then 3
levels of this search suffices to explore all nodes of C.
Thus since the maximum degree of a job or machine is
bounded by λ, the size of C is at most:

|C| ≤ (β − 1)λ3 ≤ (β − 1) log6m.

This leads to a contradiction when β = logm and c > 7.
Thus such a job in the fourth level exists, yielding a
special job sequence of size β = O(logm).

The proof above gave a way to construct the
sequence of jobs given the graph. This also gives us a way
to upper bound the number of such special sequences.

Lemma 5.6. Let C be a connected component of G`.
There are at most m(βλ)4β special job sequences for
β = logm. So for λ ≤ log2 n, this is upper bounded by
m(log12m)logm ≤ m1+12 log logm.

Proof. Let us count special job sequences by following
the construction given in the proof of Lemma 5.5. There
are at most m jobs we can start with to construct a
special sequence. At the i’th step of the construction
there are at most (iλ)4 possible jobs we can choose to
append onto the sequence by traversing out 4 hops in
the graph from the currently chosen jobs. Since i ≤ β,
this is at most (βλ)4. Thus there are at most m(βλ)4β

such special job sequences.

The previous lemma bounds the number of possible
special job sequences. Using this, we can bound the
probability that all jobs in a fixed special job sequence
fail to be assigned by randomized rounding, and then
union bound over all possible special job sequences.

Lemma 5.7. Fix a special job sequence σ of length β =
logm. The probability that all jobs in σ fail to be assigned
by randomized rounding is at most m−100 log logm.

Proof. Recall that a job is failed to be assigned by
randomized rounding if it chose a machine with load
> (100 log logm+ 1)T . Let Li be the load of jobs that
sample machine i in randomized rounding and let Xij

be the random variable indicating whether or not job j
sampled machine i in randomized rounding. Then we
have Li =

∑
j∈N(i) p

′
jXij and in expectation:

E[Li] ≤
∑

j∈N(i)

p′j
1

λ
≤ T

Applying Theorem A.2, we have that the probability
that a machine becomes overloaded is:

Pr[Li > T (1 + 100 log logm)]

≤ exp

(
− (100 log logm)2

2 + log logm

)
≤ exp(−100 log logm)

Now let σ be a special job sequence. For j ∈ σ, we
have that the probability that j fails to be assigned by
randomized rounding is at most the probability that any
machine becomes overloaded. Since N(j) ∩ N(j′) = ∅
for all j, j′ ∈ σ, we have that the jobs in σ fail to be
assigned by randomized rounding independently. Thus
the probability that all jobs in σ fail to be assigned is at
most

exp(−100 log logm)β = exp(−100β log logm)

= m−100 log logm,

proving the lemma.

We are now ready to show that every connected
component in G` is small with high probability.

Lemma 5.8. With high probability, every connected
component of G` has size O(logcm).

Proof. By Lemma 5.5, it suffices to show that no special
sequence of jobs of length β = logm exists in G` with
high probability. For a fixed special sequence of jobs,
Lemma 5.7 states the probability that it is in G` is at
most m−100 log logm. Now taking a union bound over

1869
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

all special sequences, the probability that there exists a
special sequence of jobs in G` of length β = logm is at
most(

m−100 log logm
) (
m(log12m)logm

)
=
(
m−100 log logm

) (
m1+12 log logm

)
≤ m−5,

where we use the bound on the number of special job
sequences from Lemma 5.6. Thus no special sequence of
length logm exists in G` with high probability.

Lemma 5.9. Fix a class ` of large support jobs. We
can round the jobs in this class with makespan at most
O(log logm)T with high probability.

Proof. Each job in this class is assigned by random-
ized rounding or by a separate greedy assignment.
The jobs assigned by randomized rounding contribute
O(log logm)T to the makespan by definition of our al-
gorithm. Looking at the instance after removing all jobs
assigned by randomized rounding, by Lemma 5.8 every
connected component in the underlying graph of this
instance has size at most O(logcm) for some constant
c with high probability. Thus running Greedy on this
remaining instance contributes an extra O(log logm)T
to the makespan. In aggregate, the contribution to
the makespan from this class of large support jobs is
O(log logm)T .

5.2.3 Rounding Jobs with Small Support In this
section we consider the case where for jobs j that have
small support. Recall that this means that

∑
i∈S′j

xij ≥
1/2 where S′j is the set of machines i where xij ≤ 1

log2m
.

In this case, we set xij = 0 for i /∈ S′j . Then we re-
normalize the remaining fractional assignment to ensure∑
i xij = 1 for all j, increasing each assignment by at

most a factor of 2. Note that since we are rounding
jobs of a single class, we may assume all jobs are unit
sized and the makespan is T is bounded by O(logm) by
rescaling.

The algorithm that we use to handle this type of
jobs, Iterated Randomized Rounding, works in several
phases. Each phase k maintains a fractional load Tk and
integer load L(i, k) for each machine. The load L(i, k)
counts the total size of jobs assigned using this procedure
in phase k. In each phase we attempt to randomly assign
a job to several machines, however this fails if L(i, k)
is too large for the sampled machines. In the case of
failure, the job goes on to the next phase. Our analysis
will show that after O(log logm) phases only few jobs
will be left and we will handle them separately.

Interestingly the procedure can be done for each
job individually, where L(i, k) is the load assigned to

the machine so far among jobs in phase k. Thus the
procedure can be done online.

Algorithm 2 Iterated Randomized Rounding

1: for each job j do
2: for each phase k = 0, 1, 2, . . . do
3: For each i ∈ N(j) assign j to i independently

with probability xij
4: If L(i, k) > 10T for all sampled machines,

then j goes to the next phase
5: Otherwise assign j to i such that L(i, k) <

10T and increase the load of all sampled machines i
with L(i, k) < 10T

In the first phase of Iterated Randomized Rounding,
the fractional load of each machine is at most T . The
intuition behind this algorithm is that as the algorithm
goes to higher and higher phases, then this fractional
load should decrease quickly. Let Tk be the bound on the
fractional load in phase k of Iterated Random Rounding.
We will to show that Tk+1 ≤ ρTk for some constant
ρ ∈ (0, 1) with high probability. We can continue running
Iterated Random Rounding while this bound is relatively
large. When we reach a phase where the fractional
load becomes too small, any job that is still unassigned
becomes a “leftover” job and we assign it using a different
technique. The number of phases of Iterated Randomized
Rounding we need will be O(log logm), implying that
the contribution to the makespan of jobs with small
support will be O(log logm)T plus the contribution of
“leftover” jobs. We start the analysis with the following
lemma.

Lemma 5.10. Let Tk be an upper bound on the frac-
tional load of all jobs that make it to phase k in It-
erated Randomized Rounding, with T0 = T . For all
k = 0, 1, 2, . . . we have that Tk+1 ≤ ρTk for some con-
stant ρ ∈ (0, 1) with high probability.

Proof. Consider a phase k and let Tk be as in the lemma
statement. We need to upper bound the fractional load
of jobs that fail to be assigned in phase k, and hence
contribute to the fractional load in phase k + 1. Let
L(i, k) be the load of machine i in phase k and let N(i, k)
be the set of jobs that can be assigned to machine i in
phase k. We have that

E[L(i, k)] =
∑

j∈N(i,k)

pjxij ≤ Tk

The probability that any job fails to be assigned in phase
k is at most the probability that machine i has load more
than 10T in phase k. By Markov’s inequality this is at

1870
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

most

Pr[L(i, k) > 10T] ≤ E[L(i, k)]

10T
≤ Tk

10T
≤ 1

10

since Tk ≤ T for all k. Now fix a machine i∗. We
are interested in how much fractional load i∗ may
potentially contribute to the next phase. Let Z(k, i∗, i) =∑
j∈N(i,k) xi∗jI(j picks i). Intuitively, if j picks machine

i and j ends up going to phase k+1, then j will contribute
xi∗j to i∗’s fractional load. First we bound Z(k, i∗, i)
with high probability.

Claim 5.11. For each i, Z(k, i∗, i) ≤
(

d+1
log2m

)
Tk with

high probability for some constant d > 0 when Tk =
Ω(1

logm).

Proof. In expectation we have

E[Z(k, i∗, i)] =
∑

j∈N(i,k)

xi∗jE[I(j picks i)]

=
∑

j∈N(i,k)

xi∗jxij

≤ 2

log2m

∑
j∈N(i,k)

xij ≤
2Tk

log2m

Since Z(k, i∗, i) is a sum of independent random variables
in the form needed for Theorem A.2, we apply this
theorem with a ≤ 2

log2m
and v ≤ 2

log2m
E[Z(k, i∗, i)].

Thus taking λ = dTk/ log2m, we have

Pr[Z(k, i∗, i) >
2Tk

log2m
+ λ]

≤ exp

(
−λ2

4E[Z(k,i∗,i)]
log2m

+ 4λ
3 log2m

)

≤ exp

(
−d2T 2

k
4Tk

log2m
+ 4dTk

3 log2m

)

= exp

(
−
(

d2

4 + 4d/3

)
Tk log2m

)
= exp(−c′ logm) = m−c,

for some constant c′ depending on d. Note from the
second to last line to the last line we used the fact that
Tk = Ω(1/ logm). Now choosing c′, d large enough and
taking a union bound over all machines we see that
Z(k, i∗, i) ≤ d+1

log2m
Tk for all i with probability at least

1− 1/mc′−1.

To bound the fractional load in the next phase define
Z(k, i∗) =

∑
i Zk,i∗,iI(i overloaded in phase k). Note

that this is a bound on the fractional load that survives

phase k and hence goes to phase k+ 1. Thus any bound
on this random variable that holds for all i∗ yields a
bound on Tk+1.

Claim 5.12. For each i∗, Z(k, i∗) ≤ ρTk for some
ρ ∈ (0, 1) with high probability when Tk = Ω(1/ logm).

Proof. For each i∗, in expectation we have

E[Z(k,i∗)]

=
∑
i

E[Z(k, i∗, i)] Pr[i overloaded in phase k]

≤ 1

10

∑
i

∑
j∈N(i,k)

xi∗jxij

=
1

10

∑
j∈N(i,k)

xi∗j
∑
i

xij

=
1

10

∑
j∈N(i,k)

xi∗j ≤
1

10
Tk.

By Claim 5.11, we have that Z(k, i∗, i) ≤ d+1
log2m

Tk
for all i with high probability. Now since Z(k, i∗) is
defined as a sum of independent random variables5, we
can again apply Theorem A.2 to this random variable
with a ≤ d+1

log2m
Tk and v ≤ d+1

log2m
TkE[Z(k, i∗)]. Taking

λ = qTk we have

Pr[Z(k, i∗) >
1

10
T + λ]

≤ exp

(
−λ2

2(d+1)TkE[Z(k,i∗)]
log2m

+ 2(d+1)Tkλ
3 log2m

)

= exp

 −q2T 2
k

2(d+1)T 2
k

10 log2m
+

2(d+1)qT 2
k

3 log2m


= exp

(
−
(

q2

(d+ 1)/5 + 2q(d+ 1)/3

)
log2(m)

)
Now we choose q such that ρ = 1

10 + q ∈ (0, 1) and the
above expression becomes sufficiently small, i.e. ≤ m−c
for some constant c > 1. Then taking a union bound over
all machines i∗, we have that Z(k, i∗) ≤ (1

10 +q)Tk = ρTk
for all i∗ with high probability.

By Claim 5.12, we can take Tk+1 = maxi∗ Z(k, i∗),
which is at most ρTk with high probability, proving the
lemma.

5Machines in the same phase become overloaded independently
of one another because the machines are selected independently
by each job and a job can increase the load of multiple machines
in the same phase (even if it is assigned to a single one).

1871
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Now we have a sequence of bounds T0, T1, . . . , Tk, . . .
that hold with high probability. Note that in the proof
of Claim 5.11, we required that Tk = Ω(1/ logm). Thus
it only makes sense to consider this sequence while this
bound is true. We assume that T0 = T = Ω(1) and
that T = O(logm). Thus there are O(log logm) phases
before Tk becomes O(1/ logm). Jobs that make it this
far without being assigned become “leftover” jobs and
we assign them using a different technique.

5.2.4 Rounding the “Leftover” Large Jobs with
Small Support The “leftover” jobs are small support
jobs that survived too many phases of random assign-
ments. The setup of this case is the following. Each job
has xi,j ≤ 1

log2m
. Let T (i) =

∑
j xi,j be the fractional

load of machine i. It is the case that T (i) ≤ 1
64 logm for

each machine i ∈ m.
Consider the following algorithm. Each job j

independently samples a set M(j) of machines from N(j)
where machine i ∈ N(j) is in the set with probability
32 logm · xi,j . Each job j is assigned to the machine
which has the smallest load in this phase. Now we
show that with high probability that for each job j it
is always the case that M(j) contains a machine i such
that i /∈ M(j′) for all other jobs j. Thus, with high
probability each machine is assigned at most one job.

Lemma 5.13. With probability at least 1− 1
m it is the

case that for all jobs j the set M(j) contains a machine
i not in M(j′) for all j′ 6= j.

Proof. Fix any job j. First we show that |M(j)| ≥
5 logm with probability at least 1− 1

m4 . Indeed, let Xi

be 1 if job j samples machine i and 0 otherwise. By
definition of the algorithm E[Xi] = 32 logm · xi,j and
E[
∑m
i=1Xi] = 32 logm. Using TheoremA.1 we have that

the probability |M(j)| =
∑m
i=1Xi is smaller than 5 logm

is at most exp(− 32 logm
8) = 1

m4 . Thus |M(j)| ≥ 5 logm
with probability at least 1− 1

m4 .
Consider any machine i. Let Gi be the random

variable with value 1 if there is no job j′ 6= j such that
i ∈ M(j′). Otherwise Gi has value 0. By definition of
the algorithm we have the following.

Pr[Gi = 1] = Pr[i /∈M(j′) ∀j 6= j′]

=
∏
j′ 6=j

Pr[i /∈M(j′)]

=
∏
j′ 6=j

(1− 32 logm · xi,j′)

≥ exp(−32 logm
∑
j′ 6=j

xi,j′)

≥ exp(−32 logmT (i))

≥ 1

e1/2
[T (i) ≤ 1

64 logm by assumption]

Let Ej denote the event that |M(j)| ≥ 5 logm.
Consider the probability that G :=

∑
i∈M(j)(1 −

Gi) given that Ej occurs. This is the probability
of the bad event where no machine in M(j) is se-
lected only by j given Ej . Given a set M(j), we
know E[G | M(j)] = E[

∑
i∈M(j)Gi | M(j)] =∑

i∈M(j) E[Gi] =
∑
i∈M(j)

1
e1/2

= |M(j)|
e1/2

. This holds

for all sets M(j). Thus, E[G | Ej] ≥ 5 logm
e1/2

. Using
Theorem A.1 the probability that G :=

∑
i∈M(j)(1−Gi)

given Ej is at most exp(− 5 logm
2e1/2

) ≥ 1
m3/2 .

We now put the above facts together. The probabil-
ity Ej does not occur is at most 1

m4 . The probability
that G = 0 given Ej occurs is at most 1

m3/2 . One of these
events must occur for G to be 0. Thus, a union bound
says that the probabilityG = 0 is at most 1

m4 + 1
m3/2 ≤ 1

m .
Therefore, the probability G ≥ 1 happens with probabil-
ity at least 1− 1

m , implying that there is a machine i in
M(j) such that no other job j′ has i ∈M(j′).

5.2.5 Assigning the Small Jobs In this section we
show how the small jobs can be assigned. For each
small job, we preprocess its fractional assignment as
follows. First we set x′ij = 0 for i /∈ Sj , then set
x′ij = xij/

∑
i′∈Sj

xi′j for i ∈ Sj . It is easy to verify
that this transformation has the following properties.

• x′ij ≥ 0 and
∑
i∈N(j) x

′
ij = 1

• x′ij ≤ 2xij

• If x′ij > 0 then pij ≤ T/ log(m)

This is all the preprocessing we need to do for
small jobs. Afterwards all small jobs are assigned using
randomized rounding.

Note that the preprocessing and the randomized
rounding can be executed online.

1872
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Algorithm 3 Randomized Rounding

1: for each job j do
2: Sample i ∈ N(j) according to the distribution
{xij}mi=1

3: Assign job j to machine i

Lemma 5.14. Let S be the set of all small jobs. Apply-
ing randomized rounding with the preprocessed fractional
assignments x′ij yields a makespan of O(T) for just the
jobs in S with high probability.

Proof. Let Xij be the indicator random variable for
the event that j ∈ S is assigned to machine i. By
definition of randomized rounding, we have that the
random variables Xij are independent for varying j. Let
LSi =

∑
j∈S∩N(i) pijXij be the load of the small jobs on

machine i. Computing expectations we have

E[LSi] =
∑

j∈S∩N(i)

pijx
′
ij ≤ 2

∑
j∈S∩N(i)

pijxij ≤ 2T.

Applying Theorem A.2 with v =
∑
j∈S∩N(i) p

2
ijx
′
ij ≤

2 T
logmE[LSi] ≤ 2T 2

logm , a ≤ T
logm , and λ = cT for some

large enough constant c we have

Pr[LSi > 2T + λ] ≤ Pr[LSi > E[LSi] + λ]

≤ exp

(
−λ2

2v + aλ/3

)
= exp

(
−c2T 2

4T 2

logm + cT 2/3
logm

)
= exp (−d logm)) = m−d,

where d = 3c2

12+c is a constant. Now taking a union bound

over all machines, we have LSi ≤ (c+ 2)T for all i with
probability at least 1−md−1. Since c is some constant,
this proves the lemma.

6 Lower Bounds for Online Rounding

In this section we aim to prove the following result, as
stated in Section 1.

Theorem 6.1. Let x be a fractional assignment of re-
stricted assignment jobs that is received online and
let T := max{maxi

∑
j∈N(i) pjxij ,maxj pj} be the ad-

justed fractional makespan. No deterministic algo-
rithm for converting x to an integer assignment can be
o(logm/ log logm)-competitive with respect to T . Fur-
ther, no randomized algorithm for the same task can be
o(log logm/ log log logm)-competitive with respect to T .

6.1 Deterministic Lower Bound In this section we
give a bad instance for deterministic online rounding
algorithms for makespan. A rounding algorithm converts
a fractional solution xij ≥ 0 in which

∑
i∈N(j) xij =

1 for each job j into an assignment of job j on
some machine i ∈ N(j). For a sequence of n jobs
with fractional solutions, the fractional makespan is
maxi

∑
j∈N(i) pjxij . Due to bad integrality gaps for

some instances, we compare our algorithms to T :=
max{maxi

∑
j∈N(i) pjxij ,maxj pj}, which we refer to as

the adjusted fractional makespan. We show that for
any deterministic online rounding algorithm there is
an instance for which it incurs a large makespan when
compared to T .

Lemma 6.1. For any deterministic online rounding
algorithm A there exists a sequence of unit size jobs such
that A has makespan logm/ log logm while the fractional
makespan is 1/ log logm and the optimal solution has
makespan 1.

Proof. Fix the deterministic rounding algorithm A. Let
λ, p andm be integers such that λp = m. The exact value
of λ will be chosen later. We consider an instance with
m machines. Each job in our sequence will have a size
of 1 and a neighborhood of cardinality λ and fractional
solution xij = 1

λ for each i ∈ N(j). The bad sequence of
jobs will consist of p phases. In the first phase, we release
m/λ jobs, each with disjoint neighborhoods of size λ.
We observe where A assigns these jobs. Since these jobs
had disjoint neighborhoods they get assigned to different
machines. Let M ′ be the set of machines where a job got
assigned and recurse on this set of machines, starting
a new phase. Note that |M ′| = m/λ. This recursion
continues until we run out of machines. By our choice
of λ, p,m, there are p phases since λp = m.

Letting λ = log(m), we observe that the rounding
algorithm’s makespan is p = log(m)/ log log(m), while
the optimal solution in hindsight has makespan 1. It
is also easy to verify that the fractional makespan is
p/λ = 1/ log log(m).

For the above sequence T = max{1/ log logm, 1},
and so this implies the Ω(logm/ log logm) lower bound
for deterministic algorithms. Note that using a uniform
fractional assignment on other sequences of jobs such as
the one described in [4] does not suffice. For an analysis
of a deterministic algorithm on these sequences of jobs
we would have T = Θ(logm), while the algorithm’s
makespan would be Ω(logm). Thus the resulting ratio
would be constant.

6.2 Randomized Lower Bound Applying Yao’s
principle [31], we aim to give a distribution over

1873
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

instances such that any deterministic algorithm A has
a large makespan in expectation when compared to the
corresponding fractional makespan. Lemma 6.1 implies
that for each algorithm A, there exists an instance IA for
which A has makespan at least Ω(logm/ log logm) factor
bigger than the corresponding value of T for the instance.
We start by describing a distribution for instances on m
machines. Afterwards we boost this to a distribution for
instances on M := mk machines for some parameter k.
We conclude the lower bound by analyzing the resulting
makespan in terms of M .

6.2.1 Distribution for instances on m machines
As hinted above, our distribution over instances on m
machines will be uniform over all possible instances
described in Lemma 6.1. Fix integers λ, p and m such
that λp = m. In particular we use λ = logm and
p = logm/ log logm as in Lemma 6.1. Let I be the
set of all instances of the form given by Lemma 6.1
with parameters λ, p and m. Then our distribution over
instances is uniform over I, i.e. for any instance I we
set

Pr[send I] =

{
1/|I| if I ∈ I
0 otherwise

We now analyze this distribution and state some key
properties it has.

Proposition 6.1. The set of instances I has the fol-
lowing properties:

1. |I| ≤ O
(
λO(p2λp)

)
2. |I| ≥ Ω(λΩ(pλp))

3. For every I ∈ I, the corresponding fractional
makespan is 1/ log logm

4. For every deterministic algorithm A, there ex-
ists IA ∈ I such that A has makespan at least
logm/ log logm.

Proof. The last two points follow from Lemma 6.1, so
we prove the first two points. To bound the number
of such instances we describe a process to generate an
instance of I. We start by choosing a set of λ machines
from the set of m machines, then λ from the remaining
m−λ machines, and so on. Each set corresponds to unit
size job with the set of machines as its neighborhood.
Afterwards, we choose of m/λ machines, one from each
set, and recurse on these machines. We count the number
of ways to pick the initial set of jobs as(

m

λ

)(
m− λ
λ

)
· · ·
(
m− (m/λ)λ

λ

)
=

m!

(λ!)m/λ

To see this equality note that corresponding terms in
the numerators and denominators cancel out, leaving
just the first m! and a λ! for each binomial term. After
picking these jobs, there are λm/λ ways to choose the
set of machines to recurse on since there are m/λ sets of
size λ and we choose one machine from each. Applying
this idea recursively, we get that

|I| =
p∏
`=0

(m/λ`)!

(λ!)m/λ` λ
m/λ`

At some loss, we upper bound this by taking the first
term (since it’s the largest) in the product above to the
p’th power.

|I| ≤
(

m!

(λ!)m/λ
λm/λ

)p
We now use the fact that m = λp to express everything
in terms of only λ and p.

|I| ≤
(

(λp)!

(λ!)λp−1 λ
λp−1

)p
Using Sterling’s approximation for factorial we have that
(λp)! = O(λp(λ

p+1)) and λ! ≥ Ω(λλ). Now combining
these two inequalities we have that

|I| ≤ O
(
λO(p2λp)

)
Now to get the lower bound we look at the first term in
the product above and substitute m = λp.

|I| ≥ m!

(λ!)m/λ
λm/λ =

(λp)!

(λ!)λp−1 λ
λp−1

Again using Sterling’s approximation for factorial we
have (λp)! = Ω(λpλ

p

) and λ! = O(λλ+1). Combining
these yields

|I| ≥ Ω(λΩ(pλp))

completing the proof.

The above proposition implies that for any determin-
istic algorithm A, the probability that A incurs makespan
at least Ω(logm/ log logm) is 1/|I| ≥ Ω(1/λO(p2λp))

6.2.2 Boosting the Distribution Since the above
distribution on m machines has a low probability
of incurring a high makespan on some deterministic
algorithm A, we need to boost this in order to conclude
our lower bound. Let k := |I| and set M := mk. We
construct a distribution for instances on M machines as
follows. Partition the set of M machines into k groups
of m machines and on each group independently sample
an instance from I.

1874
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Let I1, I2, . . . , Ik be the sampled instances on each
group of machines. For any deterministic algorithm A
we have that group s has makespan logm/ log logm if
Is = IA, which happens with probability at least 1/k.
Using this we can show the following lower bound on
the expected makespan of algorithm A.

Lemma 6.2. The expected makespan of any determinis-
tic algorithm A on the above distribution over instances
on M machines is at least Ω(logm/ log logm).

Proof. Algorithm A has makespan Ω(logm/ log logm) if
any group’s sampled instance is equal to A’s bad instance,
IA. This occurs with the following probability:

Pr[∨ks=1(Is = IA)] = 1− Pr[∧ks=1(Is 6= IA)]

= 1−
k∏
s=1

(1− Pr[Is = Ik])

≥ 1− (1− 1/k)k

≥ 1− 1/e = Ω(1)

So A’s expected makespan is Ω(logm/ log logm).

Finally, we just need to conclude that log logM =
O(logm) and log log logM = Ω(log logm) to finish the
proof of the lower bound.

Lemma 6.3. For M := mk, we have log log(M) =
O(logm) and log log logM = Ω(log logm)

Proof. Since k = O
(
λO(p2λp)

)
and m = λp, we have

M = O
(
λO(p2λp)

)
as well. Thus we have logM =

O
(
p2λp log λ

)
and

log logM = O(log p+ p log λ+ log log λ) = O(p log λ).

Now using that p = logm/ log logm and λ = logm we
have that log logM = O(logm).

Similarly, since k = Ω(λΩ(pλp)) and m = λp, we
have M = mk = Ω(λΩ(pλp)). Thus we have logM =
Ω(pλp log λ) and log logM = Ω(log p+p log λ+log log λ).
Thus we have

log log logM = Ω(log p) = Ω(log logm)

since p = logm/ log logm.

Finally, we see that Lemmas 6.1, 6.2, and 6.3 imply
Theorem 6.1.

7 Conclusion

We study the use of predictions for scheduling algorithms,
in particular demonstrating how to use machine learned

predictions to improve the online competitive ratio for
minimizing the makespan in the restricted assignment
setting. After proposing the concept of predicting
machine weights, we show how to use these weights to
construct fractional assignments online that are robust
to possible errors in the predictions. We then give a
new randomized algorithm for rounding the fractional
assignments online while incurring only O((log logm)3)
loss in the competitive ratio.

Many interesting open problems remain. An imme-
diate avenue is generalizing our work to other scheduling
settings. For instance, it is not clear what kinds of pre-
dictions can be used to effectively recover a near optimal
fractional assignment for the unrelated machines setting.
The ML advice paradigm also led us to investigate the
problem of rounding fractional assignments online. We

showed a lower bound of Ω
(

log logm
log log logm

)
, tightening the

gap between the bounds remains a challenging open
problem. More generally, understanding how to effec-
tively use predictions to formally improve competitive
ratios is an interesting area for further research.

Acknowledgement

We thank the anonymous reviewers for their careful
reading of our manuscript and their many insightful
comments and suggestions.

References

[1] S. Agrawal, M. Zadimoghaddam, and V. Mirrokni.
Proportional allocation: Simple, distributed, and di-
verse matching with high entropy. In J. Dy and
A. Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 99–
108, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

[2] N. Ailon, B. Chazelle, K. L. Clarkson, D. Liu,
W. Mulzer, and C. Seshadhri. Self-improving algo-
rithms. SIAM J. Comput., 40(2):350–375, 2011.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts.
On-line routing of virtual circuits with applications
to load balancing and machine scheduling. J. ACM,
44(3):486–504, May 1997.

[4] Y. Azar, J. S. Naor, and R. Rom. The competitiveness
of on-line assignments. J. Algorithms, 18(2):221–237,
Mar. 1995.

[5] E. Balkanski, A. Rubinstein, and Y. Singer. The
power of optimization from samples. In Advances in
Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages
4017–4025, 2016.

1875
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

[6] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider.
The locality of distributed symmetry breaking. J. ACM,
63(3):20:1–20:45, 2016.

[7] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen,
and J. W. Mikkelsen. Online algorithms with advice:
A survey. SIGACT News, 47(3):93–129, Aug. 2016.

[8] S. Bubeck and A. Slivkins. The best of both worlds:
Stochastic and adversarial bandits. In COLT 2012 -
The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pages 42.1–42.23,
2012.

[9] D. Chakrabarty, S. Khanna, and S. Li. On (1,ε))-
restricted assignment makespan minimization. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 1087–1101,
2015.

[10] R. Cole and T. Roughgarden. The sample complexity
of revenue maximization. In Proceedings of the Forty-
sixth Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 243–252, New York, NY, USA, 2014.
ACM.

[11] N. R. Devanur and T. P. Hayes. The adwords
problem: online keyword matching with budgeted
bidders under random permutations. In Proceedings
10th ACM Conference on Electronic Commerce (EC-
2009), Stanford, California, USA, July 6–10, 2009,
pages 71–78, 2009.

[12] P. Dütting, Z. Feng, H. Narasimhan, and D. C.
Parkes. Optimal auctions through deep learning. CoRR,
abs/1706.03459, 2017.

[13] M. Ghaffari. An improved distributed algorithm for
maximal independent set. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 270–277, 2016.

[14] C.-Y. Hsu, P. Indyk, D. Katabi, and A. Vakilian.
Learning-based frequency estimation algorithms. In
International Conference on Learning Representations,
2019.

[15] K. Jansen and L. Rohwedder. On the configuration-lp
of the restricted assignment problem. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 2670–2678,
2017.

[16] W. Kong, C. Liaw, A. Mehta, and D. Sivakumar. A
new dog learns old tricks: RL finds classic optimization
algorithms. In International Conference on Learning
Representations, 2019.

[17] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages 489–504,
New York, NY, USA, 2018. ACM.

[18] R. Kumar, M. Purohit, A. Schild, Z. Svitkina, and
E. Vee. Semi-online bipartite matching. In 10th Inno-
vations in Theoretical Computer Science Conference,

ITCS 2019, January 10-12, 2019, San Diego, California,
USA, pages 50:1–50:20, 2019.

[19] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approx-
imation algorithms for scheduling unrelated parallel
machines. Mathematical Programming, 46(1):259–271,
Jan 1990.

[20] T. Lykouris and S. Vassilvtiskii. Competitive caching
with machine learned advice. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 3302–3311,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

[21] M. Mahdian, H. Nazerzadeh, and A. Saberi. Online
optimization with uncertain information. ACM Trans.
Algorithms, 8(1):2:1–2:29, 2012.

[22] A. M. Medina and S. Vassilvitskii. Revenue optimiza-
tion with approximate bid predictions. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages
1856–1864, 2017.

[23] V. S. Mirrokni, S. O. Gharan, and M. Zadimoghad-
dam. Simultaneous approximations for adversarial and
stochastic online budgeted allocation. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 1690–1701, 2012.

[24] M. Mitzenmacher. A model for learned bloom filters
and optimizing by sandwiching. In Advances in
Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 462–471, 2018.

[25] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foun-
dations of Machine Learning. The MIT Press, 2012.

[26] M. Purohit, Z. Svitkina, and R. Kumar. Improving
online algorithms via ML predictions. In Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 9684–9693, 2018.

[27] D. B. Shmoys and É. Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Program., 62:461–474, 1993.

[28] O. Svensson. Santa claus schedules jobs on unrelated
machines. SIAM J. Comput., 41(5):1318–1341, 2012.

[29] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram. Op-
timal online assignment with forecasts. In Proceedings
of the 11th ACM Conference on Electronic Commerce,
EC ’10, pages 109–118, New York, NY, USA, 2010.
ACM.

[30] D. P. Williamson and D. B. Shmoys. The Design of
Approximation Algorithms. Cambridge University Press,
2011.

[31] A. C. Yao. Probabilistic computations: Toward a
unified measure of complexity (extended abstract). In
18th Annual Symposium on Foundations of Computer

1876
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977, pages 222–227. IEEE Computer
Society, 1977.

A Concentration Inequalities

Theorem A.1. Let X1, X2, . . . , Xt be a collection of
independent Bernoulli RV’s with Pr[Xi = 1] = pi. Let
X =

∑
iXi and µ =

∑
i E[Xi]. Then for all δ ∈ (0, 1)

Pr[X < (1− δ)µ] ≤ exp

(
−δ2µ

2

)
.

Theorem A.2. (Bernstein) Let X1, . . . , Xt be inde-
pendent Bernoulli RV’s with Pr[Xi = 1] = pi and let
a1, . . . , at be non-negative scalars. Let X =

∑
i aiXi,

v =
∑
i a

2
i pi, and a = maxi ai. Then for all λ > 0

Pr[X > E[X] + λ] ≤ exp

(
−λ2

2v + 2aλ/3

)
.

Theorem A.3. (Union Bound) Let A1, . . . , At be a
collection of events, then

Pr[A1 ∪ . . . ∪At] ≤
t∑
i=1

Pr[Ai]

B Learning Weights

In Section 3.2 we described a two step procedure—given
an instance of the problem, we generate feature and
weight pairs, (f, w), and then use any off the shelf
algorithm to find the best h that maps features to
weights.

Instead, we can consider directly building a neural
network that finds a low makespan solution. Using
neural networks for optimization problems is a nascent
area, see for instance recent work by [16, 12]. The key
is to find a good representation of the solution, and
then allow the network to find the best fit function
from features to the representation. In our case, it will
be helpful to look at the logarithmic transform of the
weights, let zi = logwi. Recall the softmax function
σ : Rm → Sm−1, where Sd is the d-dimensional simplex.

Given a vector z ∈ Rm, σ(z)i = exp(zi)∑m
j=1 exp(zj) . It is

clear that the fractional allocation xij(w) is simply the
softmax of the corresponding z vector, with coordinates
representing infeasible assignments zeroed out. Let δj
be the binary vector representing feasible machines for
job j, and ◦ be the pointwise (Haddamard) product.

Then, the goal of the network is to find a transfor-
mation from f to z that minimizes

φ(z) = max
i∈[m]

∑
j

σ(δj ◦ z)i.

While the softmax function is not convex, it is nonethe-
less frequently used in neural networks, with good results.

C Proof of Rounding Theorem

In this section we combine the results of the analysis
in Section 5 to conclude Theorem 5.1. We recall the
statement of this result here.

Theorem C.1. (Theorem 5.1 restated) Let x be a
fractional assignment of restricted assignment jobs that is
received online and let T be the fractional makespan of x,
i.e. T := maxi

∑
j∈N(i) pjxij . There exists a randomized

online algorithm that rounds a fractional assignment to
an integer assignment such that the resulting makespan
is at most O((log logm)3T) with high probability.

Proof. The result mostly follows from the lemmas in
Section 5. The worst case for our algorithm is due to the
large jobs with large support. In our algorithm there are
O(log logm) classes of large jobs by Lemma 5.1. Within
a fixed class of large jobs there are O(log logm) classes
of large support jobs by Lemma 5.2. Finally, rounding a
fixed class of large support jobs loses can be done with
makespan O((log logm)T) due to Lemma 5.9. The other
cases of our algorithm lose fewer factors of log logm, and
all cases of our algorithm succeed with high probability.
Combining these losses we see that the makespan is at
most O((log logm)3T) with high probability.

D The Doubling Lemma

Throughout the body of the paper, we described our
algorithms and results as if we knew the optimal
makespan T ∗. We now show how to remove this
assumption via a standard online doubling analysis.

Lemma D.1. There exists an online algorithm using
predictions yielding the same competitiveness as the
algorithm guaranteed by Theorems 3.1 and 5.1 that does
not need to know the optimal makespan T ∗ and succeeds
with high probability.

The proof of this lemma has been omitted from this
version of the paper.

1877
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 1

08
.3

2.
43

.1
72

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

